Managing Input and Output.Operations | 101

Code Meaning

%f print a floating point value without exponent

%g print a floating point value either e-type or f-type depending on value
%i print a signed decimal integer

%0 print an octal integer, without leading zero

%s print a string

%u print an unsigned decimal integer

%x print a hexadecimal integer, without leading Ox

The following letters may be used as prefix for certain conversion characters.
h for short integers
1 for long integers or double
L for long double.

Table 4.4 Commonly used Output Format Flags

Flag Meaning

- Output is left-justified within the field. Remaining field will be blank.
+ + or — will precede the signed numeric item.

0 Causes leading zeros to appear.

#(with o or x) Causes octal and hex items to be preceded by O and Ox, respectively.

#(with e, for g) Causes a decimal point to be present in all floating point numbers, even
if it is whole number. Also prevents the truncation of trailing zeros in g-
type conversion.

Enhancing the Readability of Qutput

Computer outputs are used as information for analysing certain relationships between variables and
for making decisions. Therefore the correctness and clarity of outputs are of utmost importance.
While the correctness depends on the solution procedure, the clarity depends on the way the output
is presented. Following are some of the steps we can take to improve the clarity and hence the
readability and understandability of outputs.

1. Provide enough blank space between two numbers.

2. Introduce appropriate headings and variable names in the output.

3. Print special messages whenever a peculiar condition occurs in the output.

4. Introduce blank lines between the important sections of the output.
The system usually provides two blank spaces between the numbers. However, this can be in-
creased by selecting a suitable field width for the numbers or by introducing a ‘tab’ character
between the specifications. For example, the statement

printf("a = %d\t b = %d", a, b);

will provide four blank spaces between the two fields. We can also print them on two separate lines
by using the statement

printf("a = %d\n b = %d", a, b);

IOZI Programming in ANSI C

Messages and headings can be printed by using the character strings directly in the printf state-

ment. Examples:

printf("\n OUTPUT RESULTS \n");
printf("Code\t Name\t Age\n");
printf("Error in input data\n");
printf("Enter your name\n");

Just Remember

BRRBREER BRBR B OB B

&

oy

While using getchar function, care should be exercised to clear any unwanted
characters in the input stream.

Do not forget to include <stdio.h> headerfiles when using functions from
standard input/output library.

Do not forget to include <ctype.h> header file when using functions from char-
acter handling library.

Provide proper field specifications for every variable to be read or printed.
Enclose format control strings in double quotes.

Do not forget to use address operator & for basic type variables in the input list
of scanf.

Use double quotes for character string constants.

Use single quotes for single character constants.

Provide sufticient field with to handle a value to be printed.

Be aware of the situations where output may be imprecise due to formatting.
Do not specify any precision in input field specifications.

Do not provide any white-space at the end of format string of a scanf statement.
Do not forget to close the format string in the scanf or printf statement with
double quotes.

Using an incorrect conversion code for data type being read or written will
result in runtime error.

Do not forget the comma after the format string in scanf and printf statements.
Not separating read and write arguments is an error.

Do not use commas in the format string of a scanf statement.

Using an address operator & with a variable in the printf statement will result
in runtime error.

Managing Input and Output Operations I 103
CASE STUDIES

1. inventory Report

Problem: The ABC Electric Company manufactures four consumer products. Their inventory posi-
tion on a particular day is given below:

Code Quantity Rate (Rs)
F105 275 575.00
H220 107 99.95
1019 321 215.50
M315 89 725.00

It is required to prepare the inventory report table in the following format:

INVENTORY REPORT

Code Quantity Rate Value

Total Value: _
The value of each item is given by the product of quantity and rate.
Program: The program given in Fig. 4.12 reads the data from the terminal and generates the re-
quired output. The program uses subscripted variables which are discussed in Chapter 7.

Program
 #define ITEMS 4

main()

{ /* BEGIN */
int i, quantity[5];
float rate[5], value, total value;
char code[5][5];
/* READING VALUES */

i=1;
while (i <= ITEMS)
{

printf("Enter code, quantity, and rate:");

scanf("%s %d %f", code[i], &quantity[i],&rate[i]);
i++;

YA Printing of Table and Column Headings....... */
printf("\n\n");

104 | Programming in ANSI C

printf(" INVENTORY REPORT \n");
printf('——— e ___ \n");
printf(" Code Quantity Rate Value \n");
printf("— - \n");
Y AR Preparation of Inventory Position...... R
total_value = 0;
i=1;

while (i <= ITEMS)
{
value = quantity[i] * rate[i];
printf("%5s %10d %10.2f %e\n",code[i],quantity[i],
rate[i],value);
total _value += value;
1++,

YA Printing of End of Table.................. */
printf("—— e \n");
printf(" Total Value = %e\n",total_value);
printf("——— o __ \n");

} /* END */

Output ,

Enter code, quantity, and rate:F105 275 575.00
Enter code, quantity, and rate:H220 107 99.95
Enter code, quantity, and rate:1019 321 215.50
Enter code, quantity, and rate:M315 89 725.00

INVENTORY REPORT

Code Quantity Rate Value

F105 275 575.00 .581250e+005

H220 107 99.95 .069465e+004

1019 321 215.50 .917550e+004

M315 89 725.00 6.452500e+004
Total Value = 3.025202e+005

= =

Fig. 4.12 Program for inventory report

2. Reliability Graph

Problem: The reliability of an electronic component is given by

reliability (r) =e ~*!
where A is the component failure rate per hour and t is the time of operation in hours. A graph is
required to determine the reliability at various operating times, from 0 to 3000 hours. The failure
rate A (lambda) is 0.001.

Managing Input and Output Operations l 105

Problem
#include <math.h>
#define LAMBDA 0.001

main()

{
double t;
float r;
int i, R;

for (i=1; i<=27; ++i)

{

}

printf{"\n");

for (t=0; t<=3000; t+=150)
{

printf('-=-");

r = exp(-LAMBDA*t);
R (int) (50*r+0.5);
printf(" |");

for (i=1; i<=R; ++i)

{

}
printf(f#\n");

printf("*");

}
for (i=1; i<3; ++i)
{

printf(" |\n");

l**#
|***#
|*************************************#
I********************************#
|***************************#
I************************#
I********************#

|*****************#

|***************#

{*************#

l***********#

I**********#

l********#

|*******#

|******#

106| Programmingin ANSIC

I*****#
|*****#
I****#
I***#
j***#

x**#

Fig. 4.13 Program to draw reliability graph
Program: The program given in Fig. 4.13 produces a shaded graph. The values of t are self-gener-
ated by the for statement
for (t=0; t <= 3000; t = t+150)
in steps of 150. The integer 50 in the statement
R = (int)(50*r+0.5)

is a scale factor which converts r to a large value where an integer is used for plotting the curve.
Remember r is always less than 1.

REVIEW QUESTIONS

4.1 State whether the following statements are rrue or false.

(a) The purpose of the header file <studio.h> is to store the programs created by the users.

(b) The C standard function that receives a single character from the keyboard is getchar.

(c) The getchar cannot be used to read a line of text from the keyboard.

(d) The input list in a scanf statement can contain one or more variables.

(e) When an input stream contains more data items than the number of specifications in a
scanf statement, the unused items will be used by the next seanf call in the program.

(f) Format specifiers for output convert internal representations for data to readable
characters.

(8) Variables form a legal element of the format control string of a printf statement.

(h) The scanf function cannot be used to read a single character from the keyboard.

(i) The format specification %+-8d prints an integer left-justified in a field width of 8 with
a plus sign, if the number is positive.

(J) If the field width of a format specifier is larger than the actual width of the value. the
value is printed right-justified in the field.

(k) The print list in a printf statement can contain function calls.

() The format specification %Ss will print only the first 5 characters of a given string to be
printed.

4.2 Fill in the blanks in the following statements.

(a) The specification is used to read or write a short integer.

(b) The conversion specifier is used to print integers in hexadecimal form.

(c) Forusing character functions, we must include the header file __ inthe program.

(d) For reading a double type value, we must use the specification .

{(e) The specification is used to read a data from input list and discard it without

Managing Input and Output Operations I 107

assigning it to many variable.
(f) The specification may be used in scanf to terminate reading at the encounter of a
particular character.
(g) The specification %[] is used for reading strings that contain .
(h) By default, the real numbers are printed with a precision of decimal places.
(i) To print the data left-justified, we must use _ in the field specification.
(j) Thespecifier ______prints floating-point values in the scientific notation.
4.3 Distinguish between the following pairs:
(a) getchar and scanf functions.
(b) %s and %c specifications for reading.
(¢) %s and %]] specifications for reading.
(d) %g and %f specification for printing.
(e) %f and %e specifications for printing.
4.4 Write scanf statements to read the following data lists:
(a) 78 B 45 (b) 123 1.23 45A
(¢) 15-10-2002 (d) 10 TRUE 20
45 State the outputs produced by the following printf statements.
(a) printf ("%d%c%f", 10, 'x', 1.23);
(b) printf ("%2d %c %4.2f", 1234,, 'x', 1.23);
(c) printf ("%d\t%4.2f", 1234, 456);
(d) printf ("\"%08.2f\"", 123.4);
(e) printf ("%d%d %d", 10, 20);
For questions 4.6 to 4.10 assume that the following declarations have been made in the program:
int year, count;
float amount, price;
char code, city[10];
double root;
4.6 State errors, if any, in the following input statements.
(a) scanf("%c%f%d", city, &price, &year);
(b) scanf("%s%d", city, amount);
(c) scanf("%f, %d, &amount, &year);
(d) scanf(\n"%f", root);
(e) scanf("%c %d %1d", *code, &count, Root);
4.7 What will be the values stored in the variables year and code when the data
1988, x
is keyed in as a response to the following statements:
(a) scanf("%d %c", &year, &code);
(b) scanf("%c %d", &year, &code);
(c) scanf("%d %c", &code, gyear);
(d) scanf("%s %c", &year, &code);
4.8 The variables count, price, and city have the following values:

count < 1275
price <——-235.74
city < Cambridge

1os|

4.9

4.10

Programming in ANSI C

Show the exact output that the following output statements will produce:
(a) printf("%d %f", count, price);
(b) printf("%2d\n%f", count, price);
(c) printf("%d %f", price, count);
(d) printf("%10dxxxx%5.2f",count, price);
(e) printf("%s", city);
(f) printf(%-10d %-15s", count, city);
State what (if anything) is wrong with each of the following output statements:
(a) printf(%d 7.2%f, year, amount);
(b) printf("%-s, %c"\n, city, code);
(c) printf("sf, %d, %s, price, count, city);
(d) printf("%c%d%f\n", amount, code, year);
In response to the input statement
scanf(“%4d%*%d", &year, &code. &count):
the following data is keyed in:
19883745
What values does the computer assign to the variables year, code, and count?

PROGRAMMING EXERCISES

4.1

4.2

4.3

4.4

Given the string “WORDPROCESSING”, write a program to read the string from the termi-
nal and display the same in the following formats:
(a) WORD PROCESSING
(b) WORD
PROCESSING
(c) W.P.
Write a program to read the values of x and y and print the results of the following expressions
in one line:

(a) X+y

X—y
Write a program to read the following numbers, round them off to the nearest integers and
print out the results in integer form:

35.7 50.21 -23.73 ~-46.45

Write a program that reads 4 floating point values in the range, 0.0 to 20.0, and prints a
horizontal bar chart to represent these values using the character * as the fill character. For the
purpose of the chart, the values may be rounded off to the nearest integer. For example, the
value 4.36 should be represented as follows.

(b) X2 (©) (x+y)(x-y)

* * * *
* % * * 4.36
* * * *

Note that the actual values are shown at the end of each bar.

Managing Input and Output Operations I 109

4.5 Write an interactive program to demonstrate the process of multiplication. The program should
ask the user to enter two two-digit integers and print the product of integers as shown below.

45

X 37

7 x451s 315
3x45is 135

Add them 1665

“\

Chapter

Decision Making
and Branching

5.1 INTRODUCTION

We have seen that a C program is a set of statements which are normally executed sequentially in
the order in which they appear. This happens when no options or no repetitions of certain calcula-
tions are necessary. However, in practice, we have a number of situations where we may have to
change the order of execution of statements based on certain conditions, or repeat a group of state-
ments until certain specified conditions are met. This involves a kind of decision making to see
whether a particular condition has occurred or not and then direct the computer to execute certain
statements accordingly.
C language possesses such decision-making capabilities by supporting the following statements:
1. if statement
2. switch statement
3. Conditional operator statement
4. goto statement
These statements are popularly known as decision-making statements. Since these statements
‘control’ the flow of execution, they are also known as control statements.
We have already used some of these statements in the earlier examples. Here, we shall discuss
their features, capabilities and applications in more detail.

.2 DECISION MAKING WITH IF STATEMENT

The if statement is a powerful decision-making statement and is used to control the flow of execu-
tion of statements. It is basically a two-way decision statement and is used in conjunction with an
expression. It takes the following form:

it (10t expression

Decision Making and Branching llll

It allows the computer to evaluate the expression first and then, depending on whether the value of the
expression (relation or condition) 1s ‘true’ (or non-zero) or ‘false’ (zero), it transfers the control to a
particular statement. This point of program has two paths to follow, one for the true condition and the
other for the false condition as shown in Fig. 5.1.

Entry

False

'L True

Fig. 5.1 Two-way branching

Some examples of decision making, using if statements are:
1. if (bank balance is zero)
borrow money
2. if (room is dark)
put on lights
3. if (codeis 1)
person is male
4. if (age is more than 55)
person is retired
The if statement may be implemented in different forms depending on the complexity of condi-
tions to be tested. The different forms are:
1. Simpleif statement
2. if.....else statement
3. Nested if....else statement
4. else if ladder.
es

We shall discuss each one of them in the next few sections.

5.3 SIMPLE IF STATEMENT

The general form of a simple if statement is

if (test expression)

{
}

statement-x;

statement-block;

112 I Programming in ANSI C

The *statement-block’ may be a single statement or a group of statements. If the test expression is
true, the statement-block will be executed; otherwise the statement-block will be skipped and the
execution will jump to the statement-x. Remember, when the condition is true both the statement-
block and the statement-x are executed in sequence. This is illustrated in Fig. 5.2.

] Entry

test True
< expression

Y

A statement-blockl
|

B
INext statementt

Fig. 5.2 Flowchart of simple if Control

Consider the following segment of a program that is written for processing of marks obtained in an
entrance examination.

if (category == SPORTS)
{

}
printf("%f", marks);

marks = marks + bonus_marks;

.........

The program tests the type of category of the student. If the student belongs to the SPORTS cat-
egory, then additional bonus_marks are added to his marks before they are printed. For others,
bonus_marks are not added.

Example 5.1 The program in Fig. 5.3 reads four values a, b, ¢, and d from the termi-
nal and evaluates the ratio of (a+b) to (c-d) and prints the result, if
c-d is not equal to zero.

The program given in Fig. 5.3 has been run for two sets of data to see that the paths function
properly. The result of the first run is printed as

Decision Making and Branching [113
Ratio = -3.181818

Program
main()
{.
int a, b, ¢, d;
float ratio;

printf("Enter four integer values\n");
scanf("%d %d %d %d", &a, &b, &c, &d);

if (c-d != 0) /* Execute statement block */

{
ratio = (float)(a+b)/(float)(c-d);
printf("Ratio = %f\n", ratio);

}
Qutput
Enter four integer values
12 23 34 45
Ratio = -3.181818

Enter four integer values
12 23 34 34

Fig. 5.3 IHlustration of simple if statement

The second run has neither produced any results nor any message. During the second run, the value
of (c—d) is equal to zero and therefore the statements contained in the statement-block are skipped.
Since no other statement follows the statement-block, program stops without producing any output.

Note the use of float conversion in the statement evaluating the ratio. This is necessary to avoid
truncation due to integer division. Remember, the output of the first run -3.181818 is printed correct
to six decimal places. The answer contains a round off error. If we wish to have higher accuracy, we
must use double or long double data type.

The simple if is often used for counting purposes. The Example 5.2 illustrates this.

Example 5.2) The program in Fig. 5.4 counts the number of boys whose weight is less

than 50 kg and height is greater than 170 cm.

The program has to test two conditions, one for weight and another for height. This is done using
the compound relation

if (weight < 50 && height > 170)

114 I Programming in ANSIC

This would have been equivalently done using two if statements as follows:
if (weight < 50)
if (height > 170)
count = count +1;

If the value of weight is less than 50, then the following statement is executed, which in turn is
another if statement. This if statement tests height and if the height is greater than 170, then the
count is incremented by 1.

Program
main()
{
int count, i;
float weight, height;

count = 0;
printf("Enter weight and height for 10 boys\n");

for (i =1; 1 <= 10; i++)
{

scanf("%f %f", &weight, &height);

if (weight < 50 &8 height > 170)

count = count + 1;
}
printf("Number of boys with weight < 50 kg\n");
printf("and height > 170 c¢m = %d\n", count);
}

Output

Enter weight and height for 10 boys
45 176.5
55 174.2
47 168.0
49 170.7
54 169.0
53 170.5
49 167.0
48 175.0
47 167
51 170

Number of boys with weight < 50 kg
and height > 170 cm = 3

Fig. 5.4 Use of if for counting

.

Decision Making and Branching I 115

@ Applying De Morgan’s Rule)

While designing decision statements, we often come across a situation where the
logical NOT operator is applied to a compound logical expression, like
(x&&y| |!z). However, a positive logic is always easy to read and comprehend
than a negative logic. In such cases, we may apply what is known as De Morgan’s
rule to make the total expression positive. This rule is as follows:

“Remove the parentheses by applying the NOT operator to every logical expres-
sion component, while complementing the relational operators”

That is,

x becomes !x
'x becomes x
&& becomes | |
|| becomes &&

Examples:
I(x && y || 1z) becomes Ix || ly && z
6 x <=0 || !condition) becomes x >0&& condition J

5.4 THE IF....ELSE STATEMULNY

The if...else statement is an extension of the simple if statement. The general form is

If (test expression)
{
True-block statement(s)
}
else
{
False-block statement(s)
}
statement-x

If the test expression is true, then the true-block statement(s), immediately following the if state-
ments are executed; otherwise, the false-block statement(s) are executed. In either case, either true-
block or false-block will be executed. not both. This is illustrated in Fig. 5.5. In both the cases, the
control is transferred subsequently to the statement-x.

116| Programming in ANSI C

' Entry
d
: - \x
// \\\
True o test _ False
= expression i
e |
—— Y ﬂ#‘,‘iﬁ,ﬁwl
{ True-block False-block
| statement statement ’
L»";ﬁWﬂWWﬁ?ﬂ@m i e

| - 0 H
e Slalement - X k« e

L I
\

Fig. 5.5 Flowchart of if......else control

Let us consider an example of counting the number of boys and girls in a class. We use code | for a
boy and 2 for a girl. The program statement to do this may be written as follows:

if (code == 1)
boy = boy + 1;

if (code == 2)
girl = girl+l;

The first test determines whether or not the student is a boy. If yes, the number of boys is increased by
1 and the program continues to the second test. The second test again determines whether the student
is a girl. This is unnecessary. Once a student is identified as a boy. there is no need to test again for a
girl. A student can be either a boy or a girl, not both. The above program segment can be modified
using the else clause as follows:

..........

..........

if (code == 1)

boy = boy + 1;
else

girl = girl + 1;
XXXXXXXXXX

Decision Making and Branching I 117

Here, if the code is equal to 1, the statement boy = boy -+ 1; is executed and the control is trans-
ferred to the statement xxxxxx, after skipping the else part. If the code is not equal to 1, the statement
boy = boy + 1: is skipped and the statement in the else part girl = girl + 1; is executed before the
control reaches the statement XXXXXXXX.

Consider the program given in Fig. 5.3. When the value (c—d) is zero, the ratio is not calculated
and the program stops without any message. In such cases we may not know whether the program
stopped due to a zero value or some other error. This program can be improved by adding the else
clause as follows:

ratio = (float)(a+b)/(float)(c-d);
printf(“"Ratio = %f\n", ratio);

..........

Example 5. A program to evaluate the power series

2 3 n
=Tax+ 24X 4 X 0<x<l

20 3l n!
is given in Fig. 5.6. It uses if......else to test the accuracy.
The power series contains the recurrence relationship of the type

—
|

=T, (%) forn>1

T,=xforn=1
Ty=1

If T,., (usually known as previous term) is known, then T, (known as present term) can be easily
found by multiplying the previous term by x/n. Then

et=Ty+ T+ T, + ... + T, =sum
Program
#define ACCURACY 0.0001
main()

{
int n, count;
float x, term, sum;

printf("Enter value of x:");

118 I Programming in ANSI C

scanf("%f", &x);

n = term = sum = count = 1;
while (n <= 100)
{

term = term * x/n;

sum = sum + term;

count = count + 1;

if (term < ACCURACY)

n = 999;
else
n=n+1;

}
printf("Terms = %d Sum = %f\n", count, sum);
}
Output
Enter value of x:0
Terms = 2 Sum = 1.000000

Enter value of x:0.1
Terms = 5 Sum = 1.105171

Enter value of x:0.5
Terms = 7 Sum = 1.648720

Enter value of x:0.75
Terms = 8 Sum = 2.116997

value of x:0.99

Terms = 2.691232
Enter f x:1
Terms = 2.718279

Fig. 5.6 Illustration of if...else statement

The program uses count to count the number of terms added. The program stops when the value of the
term is less than 0.0001 (ACCURACY). Note that when a term is less than ACCURACY, the value
of n is set equal to 999 (a number higher than 100) and therefore the while loop terminates. The
results are printed outside the while loop.

5.5 MNESTING GF IF...ELSE STATEMENTS

When a series of decisions are involved, we may have to use more than one if...else statement in
nested form as shown below:

Decision Making and Branching | 119

——if (testcondition-1)
_if (test condition-2);

' gtatement -1; ——————

}
else
L

1‘ statement -2; ——

f

i else !
!

™
statement -3; — =
) L
statement -x; = — ¥ Y

The logic of execution is illustrated in Fig. 5.7. If the condition-1 is false, the statement-3 will be
executed; otherwise it continues to perform the second test. If the condition-2 is true, the statement-
1 will be evaluated; otherwise the statement-2 will be evaluated and then the controi is transferred to
the statement-x.

. Entry

I
X
// \\\
e ™.

e ~.
False -~ test ~_ True

=< condition 1 oo =

|

]

1 L

E False .~ test o True

| o condition 2 —
| | _ ‘
i ,
i

?

Y A

: statement-3 | statement-2 statement-1
| N
L !

|

statement - x I

\
N A
| Next Statement

SEa s

Fig. 5.7 Flow chart of nested if...else statements

120] Programmingin ANSI C

A commercial bank has introduced an incentive policy of giving bonus to all its deposit holders.
The policy is as follows: A bonus of 2 per cent of the balance heid on 3 1st December is given to every
one, irrespective of their balance, and 5 per cent is given to female account holders if their balance is
more than Rs. 5000. This logic can be coded as follows:

if (sex is female)
{
if (balance > 5000)
bonus = 0.05 * balance;

else
bonus = 0.02 * balance;
}
else
{
bonus = 0.02 * balance;

}
balance = balance + bonus;

When nesting, care should be exercised to match every if with an else. Consider the following alter-
native to the above program (which looks right at the first sight):

if (sex is female)
if (balance > 5000)
bonus = 0.05 * balance;
else
bonus = 0.02 * balance;
balance = balance + bonus;

There is an ambiguity as to over whichiif the else belongs to. In C, an else is linked to the closest non-
terminated if. Therefore, the else is associated with the inner if and there is no else option for the
outer if. This means that the computer is trying to execute the statement

balance = balance + bonus;

without really calculating the bonus for the male account holders.
Consider another alternative, which also looks correct:

if (sex is female)
{
if (balance > 5000)
bonus = 0.05 * balance;
}
else
bonus = 0.02 * balance;
balance = balance + bonus;

In this case, else is associated with the outer if and therefore bonus is calculated for the male account
holders. However, bonus for the female account holders, whose balance is equal to or less than 5000
is not calculated because of the missing else option for the inner if.

Decision Making and Branching I 121

Example 5.4 The program in Fig. 5.8 selects and prints the largest of the three num-

>

bers using nested if....else statements.

Program
main()

{
float A, B, C;

printf("Enter three values\n");
scanf("%f %f %f", &A, &B, &C);

printf("\nLargest value is ");
if (A>B)
{
if (A>C)
printf("%f\n", A);
else
printf("%f\n", C);
}

else
{
if (C>B)
printf("%f\n", C);
else

printf("%f\n", B);
}
}
Output
Enter three values
23445 67379 88843

Largest value is 88843.000000

Fig 5.8 Selecting the largest of three numbers

@ Dangling Else Problem >

One of the classic problems encountered when we start using nested if....else
statements is the dangling else. This occurs when a matching else is not avail-
able for an if. The answer to this problem is very simple. Always match an else
to the most recent unmatched if in the current block. In some cases, it is possible
that the false condition is not required. In such situations, else statement may be

omitted
"else is always paired with the most recent unpaired if" J

122 Programming in ANSI C
5.6 THE ELSE IF LADDER

There is another way of putting ifs together when multipath decisions are involved. A multipath
decision is a chain of'ifs in which the statement associated with each else is an if. It takes the follow-
ing general form:

if (condition 1)
statement-1; : - e

else if (condition 2)
statement-2; .

else if (condition 3)
statement-3; -

else if (condition n)
statement-n; - - > -
else
default-statement;~

statement-x; <

This construct is known as the else if ladder. The conditions are evaluated from the top (of the
ladder), downwards. As soon as a true condition is found, the statement associated with it is executed
and the control is transferred to the statement-x (skipping the rest of the ladder). When all the n
conditions become false, then the final else containing the default-statement will be executed. Fig.
5.9 shows the logic of execution of else if ladder statements.

Let us consider an example of grading the students in an academic institution. The grading is done
according to the following rules:

Average marks Grade
80 to 100 Honours
60 to 79 First Division
50 to 59 Second Division
40 to 49 Third Division
0 to 39 Fail

This grading can be done using the else if ladder as follows:

if (marks > 79)
grade = "Honours";
else if (marks > 59)
grade = "First Division";
else if (marks > 49)
grade = "Second Division";
else if (marks > 39)

Decision Making and Branching |123

grade = "Third Division";
else
grade = "Fail";
printf (“%s\n", grade);

Consider another example given below:

if (code == 1)
colour = "RED";
else if (code == 2)
colour = "GREEN";
else if (code == 3)
colour = "WHITE";
else
colour

i

"YELLOW";

Code numbers other than 1, 2 or 3 are considered to represent YELLOW colour. The same results can
be obtained by using nested if...else statements.

] Entry

/’\\
vTrue—<Eo\ndltton 1_False‘
| : / !
Y N i

V
‘[statement-1 o
""""‘T’”‘“‘J Tru . False
e Condmonz —
‘ q v

|]
|
B I .
!statement-?l T PN Eal
N r__[ge Condition- 3\ a sel
i
| \
% . >4 Y
| | statement-3 PN
‘ L ~._F
i ‘ . r Trueé)ndition-;} -?~I-S§:
i L e |
| S AN, g X
rstatement- | default i
‘ statement

|

|
‘ 1
). A :
U U
‘-stateme;’(_x~ f

Y

next statement t

Fig. 5.9 Flow chart of else..if ladder

124| Programming in ANSI C
if (code != 1)

if (code != 2)
if (code I= 3)
colour = "YELLOW";
else
colour = "WHITE";
else
colour = "GREEN";
else
colour = "RED";

In such situations, the choice is left to the programmer. However, in order to choose an if structure
that is both effective and efficient, it is important that the programmer is fully aware of the various
forms of an if statement and the rules governing their nesting.

Example 5.5] An electric power distribution company charges its domestic consum-
T ers as follows:

Consumption Units Rate of Charge
0-200 Rs. 0.50 per unit
201 - 400 Rs. 100 plus Rs. 0.65 per unit excess of 200
401 - 600 Rs. 230 plus Rs. 0.80 per unit excess of 400
601 and above Rs. 390 plus Rs. 1.00 per unit excess of 600

The program in Fig. 5.10 reads the customer number and power consumed and prints
the amount to be paid by the customer.

Program
main()
{
int units, custnum;
float charges;
printf("Enter CUSTOMER NO. and UNITS consumed\n");
scanf("%d %d", &custnum, &units);
if (units <= 200)
charges = 0.5 * units;
else if (units <= 400)
charges = 100 + 0.65 * (units - 200);
else if (units <= 600)
charges = 230 + 0.8 * (units - 400);
else
charges = 390 + (units - 600);
printf("\n\nCustomer No: %d: Charges = %.2f\n",
custnum, charges);

Decision Making and Branching I 125

Output
Enter CUSTOMER NO. and UNITS consumed 101 150
Customer No:101 Charges = 75.00

Enter CUSTOMER NO. and UNITS consumed 202 225
Customer No0:202 Charges = 116.25

Enter CUSTOMER NO. and UNITS consumed 303 375
Customer No:303 Charges = 213.75

Enter CUSTOMER NO. and UNITS consumed 404 520
Customer No:404 Charges = 326.00

Enter CUSTOMER NO. and UNITS consumed 505 625
Customer No:505 Charges = 415.00

Fig. 5.10 Ilustration of else..if ladder

@ Rules for Indentation)

When using control structures, a statement often controls many other statements
that follow it. In such situations it is a good practice to use indentation to show
that the indented statements are dependent on the preceding controlling state-
ment. Some guidelines that could be followed while using indentation are listed
below:

e Indent statements that are dependent on the previous statements; provide at
least three spaces of indentation.

e Align vertically else clause with their matching if clause.
e Use braces on separate lines to identify a block of statements.

e Indent the statements in the block by at least three spaces to the right of the
braces.

o Align the opening and closing braces.

e Use appropriate comments to signify the beginning and end of blocks.

e Indent the nested statements as per the above rules.
(J e Code only one clause or statement on each line. J

5.7 THE SWITCH STATEMENT

We have seen that when one of the many alternatives is to be selected, we can use an if statement to
control the selection. However, the complexity of such a program increases dramatically when the
number of alternatives increases. The program becomes difficult to read and follow. At times, it may
confuse even the person who designed it. Fortunately, C has a built-in multiway decision statement
known as a switch. The switch statement tests the value of a given variable (or expression) against a
list of case values and when a match is found, a block of statements associated with that case 1s
executed. The general form of the switch statement is as shown below:

126l Programming in ANSI C

switch (expression)

case value-1:
block-1
break;

case value-2:
block-2
break;

......

default-block
break;

statement-x;

The expression is an integer expression or characters. Value-1, value-2 are constants or constant
expressions (evaluable to an integral constant) and are known as case labels. Each of these values
should be unique within aswitch statement. block-1, block-2 ... are statement lists and may contain
zero or more statements. There is no need to put braces around these blocks. Note that case labels end
with a colon (©).

When the switch is executed, the value of the expression is successtully compared against the
values value-1, value-2,.... If a case is found whose value matches with the value of the expression.
then the block of statements that follows the case are executed.

The break statement at the end of each block signals the end of a particular case and causes an exit
from the switch statement, transferring the control to the statement-x following the switch.

The default is an optional case. When present, it will be executed if the value of the expression
does not match with any of the case values. If not present, no action takes place if all matches fail and
the control goes to the statement-x. (ANSI C permits the use of as many as 257 case labels).

Thesdmnmnpnmcw(ﬁswhchMamnwnﬂsﬂhmh&edtheﬂowchm1ﬁw“minF@.51L

| Entry

// ~.
~ .
-7 switch ™

LS
Q@xpressm r

\ FMWT | Expression = value-1_[Wg";g_hhl
hY |]
r Expression = value-2 block2 t o ,Cr
|
[

|
|
(no match) defauit default v"L\

block |
S—— Y
statement-x

y
Fig. 5.11 Selection process of the switch statement

Decision Making and Branching | 127

The switch statement can be used to grade the students as discussed in the last section. This is illus-
trated below:

index = marks/10
switch (index)
{
case 10:
case 9:
case 8:
grade = "Honours";
break;
case 7:
case 6:
grade = "First Division";
break;
case 5:
grade = "Second Division";
break;
case 4:
grade = "Third Division";
break;
default:
grade = "Fail";
break;
}
printf("%s\n", grade);

Note that we have used a conversion statement
index = marks / 10;

where, index is defined as an integer. The variable index takes the following integer values.

Marks Index
100 10
90 - 99 9
80 - 89 8
70 - 79 7
60 - 69 6
50 - 59 5
40 - 49 4

128 | Programming in ANSI C
This segment of the program illustrates two important features. First, it uses empty cases. The first
three cases will execute the same statements

grade = "Honours";

break;

Same is the case with case 7 and case 6. Second, defauit condition is used for all other cases where
marks is less than 40.
The switch statement is often used for menu selection. For example:

printf(" TRAVEL GUIDE\n\n");
printf(" A Air Timings\n");
printf(" T Train Timings\n");
printf(" B Bus Service\n");
printf(" X To skip\n");
printf("\n Enter your choice\n");
character = getchar();

switch (character)

{
case 'A'
air-display();
break;
case 'B'
bus-display();
break;
case 'T'
train-display();
break;
default
printf(" No choice\n"});
}

It is possible to nest the switch statements. That is, a switch may be part of a case statement. ANSI
C permits 15 levels of nesting.

e Rules for switch statement)

e The switch expression must be an integral type.

e Case labels must be constants or constant expressions
e Case labels must be unique. No two labels can have the same value.

e Case labels must end with semicolon.

-

Decision Making and Branching

e The break statement transfers the control out of the switch statement.

e The break statement is optional. That is, two or more case labels may be-
long to the same statements.

e The default tabel is optional. If present, it will be executed when the ex-
pression does not find a matching case label.

e There can be at most one default label.

G e The default may be placed anywhere but usually placed at the end.

e It is permitted to nest switch statements.

5.8 THE ? : OPERATOR

| 129

The C language has an unusual operator, useful for making two-way decisions. This operator 15 a
combination of ? and :, and takes three operands. This operator is popularly known as the conditional

operator. The general form of use of the conditional operator is as follows:

connditional expression 2 expressiond @ expressionl

The conditional expression is evaluated first. If the result is nonzero, expressionl is evaluated and 1s
returned as the value of the conditional expression. Otherwise, expression2 is evaluated and its value

is returned. For example, the segment

if (x < 0)
flag = 0;
else
flag = 1;

can be written as
flag= (x<0) 70 : 1;
Consider the evaluation of the following function:
y=15x+3forx<?2
y=2x+5forx>2
This can be evaluated using the conditional operator as follows:

y=(x>2)?2(2*x+5): (1.5*x+3);

The conditional operator may be nested for evaluating more complex assignment decisions. For ex-
ample, consider the weekly salary of a salesgirl who is selling some domestic products. If x is the

number of products sold in a week, her weekly salary is given by
4x +100 for x <40
salary = <300 for x =40
4.5x+150 forx>40
This complex equation can be written as
salary = (x != 40) ? ((x <-40) ? (4*x+100) 2 (4.5*x+150))

The same can be evaluated using if...else statements as follows:

: 300;

130] Programming in ANSIC

if (x <= 40)
if (x < 40)
salary = 4 * x+100;
else
salary = 300;
else

salary = 4.5 * x+150;

When the conditional operator is used, the code becomes more concise and perhaps, more efficient.

However, the readability

is poor. It is better to use if statements when more than a single nesting of

conditional operator is required.

Example 5.6 An employee can apply for a loan at the beginning of every six

months, but he will be sanctioned the amount according to the fol-
lowing company rules:

Rule 1

. An employee cannot enjoy more than two loans at any point

of fime.

Rule 2. Maximum permissible total loan is limited and depends upon
the category of the employee.

A program to precess loan applications and to sanction loans is given

in Fig.

5.12.

Program

{

Output

#define MAXLOAN 50000
main()

long int loanl, loan2, loan3, sancloan, sum22;
printf("Enter the values of previous two loans:\n");
scanf(" %1d %1d", &loanl, &loan2);

printf("\nEnter the value of new loan:\n");

scanf(" %1d", &loan3);

sum23 = loan2 + loan3; :

sancloan = (loanl>0)? 0 : ((sum23>MAXLOAN)?

MAXLOAN - loan2 : loan3);
printf("\n\n"); _
printf("Previous loans pending:\n%1d %1d\n",loanl,loan2);
printf("Loan requested = %1d\n", loan3);
printf("Loan sanctioned = %1d\n", sancloan);

Enter the values of previous two loans:

0 20000

Enter the value of new loan:
45000

Previous loans pending:

0 20000

Loan requested = 45000
Loan sanctioned = 30000

Decision Making and Branching

Enter the values of previous two loans:

1000 15000

Enter the value of new Joan:
25000

Previous loans pending:
1000 15000

Loan requested = 25000
Loan sanctioned 0

|131

Fig. 5.12 [llustration of the conditional operator

The program uses the following variables:

loan3
loan2
loanl
sum23

- present loan amount requested

- previous loan amount pending

- previous to previous loan pending
- sum of loan2 and loan3

sancloan - loan sanctioned
The rules for sanctioning new loan are:
I. loanl should be zero.
2. loan2 + loan3 should not be more than MAXTL.OAN.
Note the use of long int type to declare vartables.

(>

Some Guidelines for Writing Multiway Selection Statements

Complex multiway selection statements require special attention. The readers
should be able to understand the logic easily. Given below are some guidelines
that would help improve readability and facilitate maintenance.

Avoid compound negative statements. Use positive statements wherever
possible.

Keep logical expressions simple. We can achieve this using nested if state-
ments, if necessary (KISS - Keep It Simple and Short).

Try to code the normal/anticipated condition first.

Use the most probable condition first. This will eliminate unnecessary tests,
thus improving the efficiency of the program.

The choice between the nested if and switch statements is a matter of indi-
vidual's preference. A good rule of thumb is to use the switch when alterna-
tive paths are three to ten.

Use proper indentations (See Rules for Indentation).
Have the habit of using default clause in switch statements.

Group the case labels that have similar actions.

132} Programming in ANSIC
2.9 THE GOTO STATEMENT

So far we have discussed ways of controlling the flow of execution based on certain specified condi-
tions. Like many other languages, C supports the goto statement to branch unconditionally from one
point to another in the program. Although it may not be essential to use the goto statement in a highly
structured language like C, there may be occasions when the use of goto might be desirable.

The goto requires a label in order to identify the place where the branch is to be made. A label is
any valid variable name, and must be followed by a colon. The /abel is placed immediately betfore the
statement where the control is to be transferred. The general forms of goto and /abel statements are
shown below:

goto label; ———— label: <~ - -

7777777777777777 i statement;
A

,,,,,,,,,,,,,,, |

label: <————

statement;

goto label; ——-
Forward jump Backward jump

The label: can be anywhere in the program either before or after the goto label; statement.
During running of a program when a statement like

goto begin;
is met, the flow of control will jump to the statement immediately following the label begin:. This
happens unconditionally.
Note that a goto breaks the normal sequential execution of the program. If the /label: is before the
statement goto label; a loop will be formed and some statements will be executed repeatedly. Such a
jump is known as a backward jump. On the other hand, if the label: is placed after the goto label.
some statements will be skipped and the jump is known as a forward jump.
A goto is often used at the end of a program to direct the control to go to the input statement. to read
turther data. Consider the following example:

main()
{
double x, y;
read:
scanf ("%f", &x);
if (x < 0) goto read;
y = sqrt(x);
printf("%f %f\n", x, y);
goto read;

}

This program is written to evaluate the square root of a series of numbers read from the terminal. The
program uses two goto statements, one at the end, after printing the results to transfer the control
back to the input statement and the other to skip any further computation when the number is negative.

Decision Making and Branching | 133

Due to the unconditional goto statement at the end, the control is always transferred back to the
input statement. In fact. this program puts the computer in a permanent loop known as an infinite
loop. The computer goes round and round until we take some special steps to terminate the loop. Such
infinite loops should be avoided. Example 5.7 illustrates how such infinite loops can be eliminated.

Example 5.7| Program presented in Fig. 5.13 illustrates the use of the goto statement.
The program evaluates the square root for five numbers. The variable
count keeps the count of numbers read. When count is less than or
equal to 5, goto read; directs the control to the label read; otherwise,
the program prints a message and stops.

Program
#include <math.h>
main()
{
double x, y;
int count;
count = 1;
printf("Enter FIVE real values in a LINE \n");
read:
scanf("%1f", &x);
printf("\n");

if (x <0)

printf("Value - %d is negative\n",count);
else
{

y = sqrt(x);
printf("%1f\t %1f\n", x, y);
}
count = count + 1;
if (count <= 5)
goto read;
printf("\nEnd of computation");
}
Qutput

Enter FIVE real values in a LINE
50.70 40 -36 75 11.25

50.750000 7.123903

40.000000 6.324555

Value -3 is negative

75.000000 8.660254

11.250000 3.354102

End of computation

Fig. 5.13 Use of the goto statement

134] Programming in ANSIC

Another use of the goto statement is to transter the control out ot a foop (o1 nested Joops) when
certain peculiar conditions are encountered. Example:

while (----)
{

for (----)

{

if (-—--)goto end of program;—.

J ! Jumping
T | cut of
T i Toops
} |

end of program: =t————=—-m

We should try to avoid using goto as far as possible. Burt there is nothing wrong. if we use 1t 1o
enhance the readability of the program or to improve the execution speed.

Just Remember

B

oy

oy

Be aware of dangling else statenments.

Be aware of any side effects in the control expression such as ifix=+).

Use braces to encapsulate the statements i if and else clausces of an i, ... ¢lse
statement.

Check the use of =operator in place ot the equal operator = =,

Do not give any spaces between the two symbols of refational operaters = = =
>=and <=,

Writing =, >= and <= operators hke =1 => and =< is an ervor.

Remember to use two ampersands (&&) and two bars (1)) for logical operators.
Use of single operators will result in logical errors.

Do not forget to place parentheses for the if expression.

It is an error to place a semicolon atter the it expression.

Do not use the equal operator to compare two tloating-point values They are
seldormn exactly equal.

Do not forget to use a break statement when the cases in a switch statement are
exclustve.

Although it is optional. 1t is a good programming practice to use the defanlt clause
in a switch statement.

It is an error to use a variable as the value in a case label of a switch statement.
(Only integral constants are allowed.)

Do not use the same constant in two case labels in a switch statement.

Decision Making and Branching I 135

21 Aveid using operands that have side effects in a logical binary expression such as
(x ~&&++v) The second operand may not be evaluated at all,
£ Try to use simple Jogical expressions.

ot W EPLERES

Problem: A survey of the computer market shows that personal computers are sold at varying costs
by the vendors. The following is the list of costs (in hundreds) quoted by some vendors:

35.00. 40.50. 25.00, 31.25, 68.15,

47.00. 20.65, 29.00 53.45, 62.50
Determine the average cost and the range of values
Problem anafysis: Range is one of the measures of dispersion used in statistical analysis of a series
ofxahms<Thcrungcofunyscﬂcsi%th(h(ﬁxencebchwccnthc}ﬂghcstandlhelow@slvahwsinthe
serics. That s

Range = highest value - lowest value
It is therefore necessary to find the highest and the lowest values in the series,
Iﬁwgmun:Aywognuntodcuwnﬂnetherangcofvahwsandtheavmngccostofapemonalunnpuunin
the market is given in Fig. 5.1

Program
main()
{
int count;
float value, high, low, sum, average, range;
sum = 0;
count = 0;
printf("Enter numbers in a line
input a NEGATIVE number to end\n");
input:
scanf("%f", &value);
if (value < 0) goto output;
count = count + 1;
if (count == 1)
high = Tow = value;
else if (value > high)
high = value;
else if (value < low)
low = value;
sum = sum + value;
goto input;

136 I Programming in ANSI C

| Output:
average = sum/count;
range = high - low;
printf{"\n\n");
printf("Total values : %d\n", count);
printf("Highest-value: %f\nLowest-value : %¥f\n",
high, low);
printf("Range : %f\nAverage : %f\n",
range, average);
}
Output
Enter numbers in a line : input a NEGATIVE number to end
35 40.50 25 31.25 68.15 47 26.65 29 53.45 62.50 -1

Total values : 10

Highest-value : 68.150002
Lowest-value : 25.000000
Range : 43.150002
Average : 41.849998

Fig. 5.14 Calculation of range of values

When the value is read the first time, it is assigned to two buckets, high and low, through the state-
ment
high = Tow = value;

For subsequent values, the value read is compared with high; if it is larger, the value is assigned to
high. Otherwise, the value is compared with low; if it is smaller, the value is assigned to low. Note
that at a given point, the buckets high and low hold the highest and the lowest values read so far.

The values are read in an input loop created by the goto input; statement. The control is transferred
out of the loop by inputting a negative number. This is caused by the statement

if (value < 0) goto output;
Note that this program can be written without using goto statements. Try.

2. Pay-Bill Calculations

Problem: A manufacturing company has classified its executives into four levels for the benefit of
certain perks. The levels and corresponding perks are shown below:

Perks
Level = @
Conveyance Entertainment
allowance allowance

1 1000 500

2 750 200

3 500 100

4 -

250

Decision Making and Branching I 137

An executive’s gross salary includes basic pay, house rent allowance at 25% of basic pay and other
perks. Income tax is withheld from the salary on a percentage basis as follows:

Gross salary Tax rate
Gross <= 2000 No tax deduction
2000 < Gross <= 4000 3%

4000 < Gross <= 5000 5%

Gross > 5000 8%

Write a program that will read an executive’s job number, level number, and basic pay and then
compute the net salary atter withholding income tax.
Problem analysis:

Gross salary = basic pay + house rent allowance + perks

Net salary = Gross salary — income tax.
The computation of perks depends on the level, while the income tax depends on the gross salary. The
major steps are:

1. Read data.

Decide level number and calculate perks.
Calculate gross salary.
Calculate income tax.
Compute net salary.
. Print the results.
Program: A program and the results of the test data are given in Fig. 5.15. Note that the last state-
ment should be an executable statement. That is, the label stop: cannot be the last line.

5 N S VSIS S

o)

Program
#define CA1 1000
#define CAZ2 750
#define CA3 500
#define CA4 250
#define EAl 500
#define EA2 200
#define EA3 100
#define EA4 O
main()
{
int level, jobnumber;
float gross,
basic,
house rent,
perks,
net,
incometax;
input:
printf("\nEnter level, job number, and basic pay\n");
printf("Enter 0 (zero) for level to END\n\n");
scanf("%d", &level);

138

Programming in ANSI C

if (level == 0) goto stop;
scanf("%d %f", &jobnumber, &basic);
switch (level)

{

case 1:
perks = CAl + EAL;
break;

case 2:
perks = CA2 + EAZ;
break;

case 3:
perks = CA3 + EA3;
break;

case 4:
perks = CA4 + EA4;
break;

default:
printf("Error in level code\n");
goto stop;

}
house_rent = 0.25 * basic;
gross = basic + house rent + perks;
if (gross <= 2000)
incometax = 0;
else if (gross <= 4000)
incometax = 0.03 * gross;
else if (gross <= 5000)
incometax = 0.05 * gross;
else
incometax = 0.08 * gross;
net = gross - incometax;
printf("%d %d %.2f\n", level, jobnumber, net);
goto input;
stop: printf("\n\nEND OF THE PROGRAM");
}
Output
Enter level, job number, and basic pay
Enter 0 (zero) for level to END
1 1111 4000
1 1111 5980.00
Enter level, job number, and basic pay
Enter 0 (zero) for level to END

2 2222 3000
2 2222 4465.00

Decision Making and Branching

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

3 3333 2000

3 3333 3007.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

4 4444 1000

4 4444 1500.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

0

END OF THE PROGRAM

| 139

Fig. 5.15 Pav-bill calculations

REVIEW QUESTIONS

5.1 State whether the following are true or false:

(a) Whenif statements are nested, the last else gets associated with the nearestif without an

else.

(b) One if can have more than one else clause.

(c) A switch statement can always be replaced by a series of if..else statements.

(d) A switch expression can be of any type.

(e) A program stops its execution when a break statement is encountered.

(f) Each expression in the else if must test the same variable.

(g) Any expression can be used for the if expression.

(h) Each case label can have only one statement.

(i) The default case is required in the switch statement.

(j) The predicate !((x >= 10){(y ==15)) is equivalent to (x < 10) && (y !=5).
5.2 Fill in the blanks in the following statements.

(a) The _____ __operator is true only when both the operands are true.

(b) Multiway selection can be accomplished using an else if statement or the __ o
statement.

(¢) The __ statement when executed in a switch statement causes immediate exit from

the structure.

(d) The ternary conditional expression using the operator ?: could be easily coded using

statement.
(e) The expression ! (x ! =y) can be replaced by the expression _
5.3 Find errors, if any. in each of the following segments:
{a) if (x +y=228%y>0)
printf{(" ");
(b) if (code > 1);
a=>hb+c

140|

Programming in ANSI C

else
a=20
() if (p <0) || (q<0)
printf (" sign is negative");

5.4 The following is a segment of a program:

5.6

N
~3

5.8

x =13

y =1

if (n > 0)
X = x + 13
y=y-1

printf(" %d %d", x, y);
What will be the values of x and y if n assumes a value of (a) 1 and (b) 0.
Rewrite each of the following without using compound relations:
(a) if (grade <= 59 && grade >= 50)
second = second + 1;
(b) if (number > 100 || number < Q)
printf(" Out of range");
else
sum = sum + number;
(c) if ((M1 > 60 & M2 > 60) || T > 200)
printf(" Admitted\n");
else
printf(" Not admitted\n");

Assuming x = 10, state whether the following logical expressions are true or false.
(a) x==10&& x> 10 && 'x (b) x==10{x>10&&!x
(c) x==10&& x> 10} !x (d) x==10{x>10] Ix

Find errors, if any, in the following switch related statements. Assume that the variables x and
yareofinttypcandx = landy =2

(a) switch (y);

(b) case 10;

(¢) switch (x + y)

(d) switch (x) {case 2: y = x + y; break};

Simplity the following compound logical expressions
(a) '(x <=10) D) x==10)|"((y==5)](z<0))
(¢) '((x+y==2) && !(z>5) (d) H(x<=5)&& (y==10)& & (z<5))

Assuming that x = 5.y = 0, and z = | initially, what will be their values after executing the
following code segments?
{a)y if (x 8& y)

x = 10;
else
y = 10;
(b) if (x ||y |l 2)
y = 10;

else

Decision Making and Branching I 141

z = 0
(¢) if (x)
if (y)
z = 10;
else
z = 0;
(d if (x==0]] x & &y)
if (ly)
z = 0;
else
y =1

5.10 Assuming that x =2,y = 1 and z = 0 initially, what will be their values after executing the
following code segments?
(a) switch (x)

{
case 2:
x=1;
y=x+1;
case 1:
x=0;
break;
default:
x=1;
y=0;
}
(b) switch (y)
{
case 0:
x = 0;
y=0;
case 2:
X =2;
z=2;
default:
x=1;
y=2

142

Programming in ANSIC

PROGRAMMING EXERCISES

5.1

5.2

53

5.4

5.5

5.6

Write a program to determine whether a given number is *odd” or “even’ and print the message
NUMBER IS EVEN
or
NUMBER IS ODD
(a) without using else option, and (b) with else option.
Write a program to find the number of and sum of all integers greater than 100 and less than
200 that are divisible by 7.
A set of two linear equations with two unknowns x1 and x2 is given below:
ax, + bx, =m
cx; +dx,=n

The set has a unique solution

o = md — bn
ad —cb

5 .. Na—mC
*e ad—cb

provided the denominator ad — ¢b is not equal to zero.
Write a program that will read the values of constants a, b, ¢, d. m, and n and compute the
values of x; and x,. An appropriate message should be printed it ad — cb = 0.
Given a list of marks ranging from 0 to 100, write a program to compute and print the number
of students:
(a) who have obtained more than 80 marks, (b) who have obtained more than 60 marks.
(¢) who have obtained more than 40 marks, (d) who have obtained 40 or less marks,
(e) 1in the range 81 to 100, ' (f) in the range 61 to 80.
(g) inthe range 41 to 60, and (h) in the range 0 to 40.
The program should use a minimum number of if statements.
Admission to a professional course is subject to the following conditions:
(a) Marks in Mathematics >= 60
(b) Marks in Physics >= 50
{c) Marks in Chemistry >= 40
(d) Total in all three subjects >= 200

or

Total in Mathematics and Physics >= 150
Given the marks in the three subjects, write a program to process the applications to list the
eligible candidates.
Write a program to print a two-dimensional Square Root Table as shown below., to provide
the square root of any number from 0 to 9.9. For example, the value x will give the square root
of 3.2 and y the square root ot 3.9.

5.7

Decision Making and Branching I 143
Square Root Table

Number 0.0 0.1 0.2
0.0
1.0
2.0
3.0 X y

.......... 0.9

9.0

Shown below is a Floyd’s triangle.

79 . 09

(a) Write a program to print this triangle.

(by Maodifv the program to produce the following form of Floyd’s triangle.
|

101
0101
10101
A cloth showroom has announced the following seasonal discounts on purchase of items:

Purchase Discount
amount
Mill cloth Handloom items
0 - 100 - 5%
101 - 200 5% 7.5%
201 = 300 7.5% 10.0%
Above 300 10.0%

(15.0%

Write a program using switch and if statements to compute the net amount to be paid by a
customer.
Write a program that will read the value of x and evaluate the following function
j I forx<0
y=1 0 forx=0
l-»l for x <0

using

144 Programming in ANSIC

(a) nestedif statements,
(b) else if statements, and
(c) conditional operator ? :
5.10 Write a program to compute the real roots of a quadratic equation
ax’+bx+c=0
The roots are given by the equations

. ,)b2—4ac
X =-b+ —r—

2a

2
x = b Vo —4ae
2a
The program should request for the values of the constants a, b and ¢ and print the values of x,
and x,. Use the following rules:
(a) No solution, if both a and b are zero
(b) There is only one root, ifa=0 (x =—c/b)
(c) There are no real roots, ifb’— 4 acis negative
(d) Otherwise, there are two real roots
Test your program with appropriate data so that all logical paths are working as per your
design. Incorporate appropriate output messages.

Chapter

Decision Making
and Looping

6.1 INTRODUCTION

We have seen in the previous chapter that it is possible to execute a segment of a program repeatedly
by introducing a counter and later testing it using the if statement. While this method is quite satisfac-
tory for all practical purposes, we need to initialize and increment a counter and test its value at an
appropriate place in the program for the completion of the loop. For example, suppose we want to
calculate the sum of squares of all integers between | and 10. We can write a program using the if
statement as follows:

sum = 0;
n=1;
—-> loop:
J sum = sum + n*n;
1 if (n == 10)
0| goto print;—
0| else l
P ‘ ‘\ n = 10,
t__ goion;(cl)ép; !‘ end of loop
\ \
' i
print: «7A_-_~J

This program does the following things:
1. Initializes the variable n.
2. Computes the square of n and adds it to sum.
3. Tests the value of n to see whether it is equal to 10 or not. If it is equal to 10, then the program
prints the results.

146| Programming in ANSI C

4. Ifn s less than 10, then it is incremented by one and the control goes back to compute the sum
again.
The program evaluates the statement
sum = sum + n*n;

10 times. That is. the loop is executed 10 times. This number can be decreased or increased easily by
moditying the relational expression appropriately in the statement if (n == 10). On such occasions
where the exact number of repetitions are known, there are more convenient methods of looping in C.
These looping capabilities enable us to develop concise programs containing repetitive processes
without the usc of goto statements.

Inlooping. a sequence of statements are executed until some conditions for termination of the loop
are satistied. A program loop therefore consists of two segments. one known as the hodyv of the loop
and the other known as the control statement. The control statement tests certain conditions and then
directs the repeated execution of the statements contained in the body of the loop.

Depending on the position of the control statement in the loop. a control structure may be classified
cither as the entrv-controlled loop or as the exit-controlied loop. The flow charts in Fig. 6.1 illus-
trate these structures. In the entry-controlled loop. the control conditions are tested before the start of
the loop execution. 1f the conditions are not satisfied, then the body of the toop will not be executed.
In the case of an exit-controlled loop, the test is performed at the end of the body of the loop and
therefore the body s executed unconditionally for the first time. The entry-controlled and exit-con-
trolled loops are also known as pre-test and post-test loops respectively.

Entry Entry
| i
12 v
~) e
X Y
test Fal | Body of [
o condition P ase_ i the loop
S ? s 1 :
. L -
\\ ///
T |
. True i hs ;
v o . - g h \\. !
1 N |
Body of | | o conz?tion ~._False !
‘ the loop J \ 2 /
B N A =, g
! A
- s s True
y y
(a) Entry control (b) Exit control

Fig. 6.1 Loop control structures

Decision Making and Looping | 147

The test conditions should be carefully stated in order to perform the desired number of loop
executions. It is assumed that the test condition will eventually transfer the control out of the loop. In
case, due to some reason it does not do so, the control sets up aninfinite loop and the body is executed
over and over again.

A looping process, in general, would include the following four steps:
1. Setting and initialization of a condition variable.
2. Execution of the statements in the loop.
3. Test for a specified value of the condition variable for execution of the loop.
4. Incrementing or updating the condition variable.

The test may be either to determine whether the loop has been repeated the specified number of
times or to determine whether a particular condition has been met.

The C language provides for three constructs for performing loop operations. They are:

1. The while statement..~
2. The do statement. #
3. The for statement™’
We shall discuss the features and applications of each of these statements in this chapter.

@ Sentinel Loops)

Based on the nature of control variable and the kind of value assigned to it for
testing the control expression, the loops may be classified into two general cat-
egories:

1. Counter-controlled loops
2. Sentinel-controlled loops

When we know in advance exactly how many times the loop will be executed,
we use a counter-controlled loop. We use a control variable known as counter.
The counter must be initialized, tested and updated properly for the desired loop
operations. The number of times we want to execute the loop may be a constant
or a variable that is assigned a value. A counter-controlled loop is sometimes
called definite repetition loop.

In a sentinel-controlled loop, a special value called a sentinel value is used to
change the loop control expression from true to false. For example, when read-
ing data we may indicate the "end of data” by a special value, like — 1 and 999.
The control variable is called sentinel variable. A sentinel-controlled loop is
often called indefinite repetition loop because the number of repetitions is not
@ known before the loop begins executing. J

6.2 THE WHILE STATEMENT

The simplest of all the looping structures in C is the while statement. We have used while in many of -
our earlier programs. The basic format of the while statement is

148| Programming in ANSI C

while (test conditibn)

{
}

The while is an entry-controlled loop statement. The test-condition is evaluated and if the condi-
tion is frue, then the body of the loop is executed. After execution of the body, the test-condition is
once again evaluated and if it is true, the body is executed once again. This process of repeated
execution of the body continues until the test-condition finally becomes false and the control is trans-
ferred out of the loop. On exit, the program continues with the statement immediately after the body
of the loop.

The body of the loop may have one or more statements. The braces are needed only if the body
contains two or more statements. However, it is a good practice to use braces even if the body has
only one statement.

We can rewrite the program loop discussed in Section 6.1 as follows:

body of the loop

sum = 0;
n=1; /* Initialization */
while(n <= 10) /* Testing */
{
Toop sum = sum + n * n;
n = n+l; /* Incrementing */
!

printf("sum = %d\n", sum);

The body of the loop is executed 10 times forn =1, 2,, 10, each time adding the square of the
value of n, which is incremented inside the loop. The test condition may also be written as n < 11; the
result would be the same. This is a typical example of counter-controlled loops. The variable n is
called counter or control variable.

Another example of while statement, which uses the keyboard input is shown below:

character = ' ' ;

while (character != 'Y')
character = getchar();

XXXXXXX 3

First the character is initialized to * *. The while statement then begins by testing whether character
is not equal to Y. Since the character was initialized to * *, the test is true and the loop statement

character = getchar();

is executed. Each time a letter is keyed in, the test is carried out and the loop statement is executed
until the letter Y is pressed. When Y is pressed, the condition becomes false because character

Decision Making and Looping I 149

equals Y. and the loop terminates. thus transferring the control to the statement xxxxxxx;. This isa
typical example of sentinel-controlled loops. The character constant ‘y” is called sentinel value and
the variable character is the condition variable, which often referred to as the sentinel variable.

Example 6.1] A program to evaluate the equation
y=x"
when n is a non-negative integer, is given in Fig. 6.2
The variable y is initialized to 1 and then multiplied by x. n times using the while loop. The loop
control variable count is initialized outside the loop and incremented inside the loop. When the value
of count becomes greater than n, the control exists the loop.

Program
main()
{
int count, n;
float x, y;

printf("Enter the values of x and n : ");
scanf("%f %d", &x, &n);

y = 1.0;

count = 1; /* Initialisation */
/* LOOP BEGINs */

while (count <= n) /* Testing */
{
y = Y
count++; /* Incrementing */
}
/* END OF LOOP */
printf("\nx = %f; n = %d; x to power n = %f\n",x,n,y);
}
Output
Enter the values of x and n : 2.5 4
x = 2.500000; n = 4; x to power n
Enter the values of x and n : 0.5
x = 0.500000; n = 4; x to power n

"

39.062500

E=

0.062500

Fig. 6.2 Program to compute x to the power n using while loop

150] Programming in ANSI C

6.3 THE DO STATEMENT

The while loop construct that we have discussed in the previous section makes a test of condition
before the loop is executed. Therefore, the body of the loop may not be executed at all if the condition
1s not satisfied at the very first attempt. On some occasions it might be necessary to execute the body
of the loop before the test is performed. Such situations can be handled with the help of the do
statement. This takes the form:

do
{

}

while (test-condition);

body of the loop

On reaching the do statement, the program proceeds to evaluate the body of the loop first. At the
end of the loop, the test-condition in the while statement is evaluated. If the condition is true, the
program continues to evaluate the body of the loop once again. This process continues as long as the
condition 1s true. When the condition becomes false, the loop will be terminated and the control goes
to the statement that appears immediately after the while statement.

Since the test-condition is evaluated at the bottom of the loop. the do...while construct provides an
exit-controlled loop and therefore the body of the loop is always executed at least once.

A simple example of a do...while loop is:

do
‘ ‘ printf ("Input a number\n");
]OOpi ‘ number = getnum ();
| ‘

| while (number > 0);

This segment of a program reads a number from the keyboard until a zero or a negative number is
keyed in, and assigned to the sentinel variable number.
The test conditions may have compound relations as well. For instance, the statement

while (number > 0 && number < 100);

in the above example would cause the loop to be executed as long as the number keyed in lies between
0 and 100.

Consider another example:

I =1; /* Initializing */
sum = 0;
do
o
1 sum = sum + I;
1oop{ I = 1+2; /* Incrementing */
-}

while(sum < 40 || T < 10); /* Testing */
printf("%d %d\n", I, sum);

